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Abstract

The paper deals with the in¯uence of one-dimensional di�usion of small interstitial clusters produced in collision

cascades on the swelling of irradiated structural materials. It is demonstrated that the resulting swelling modi®cation

is very sensitive to microstructural parameters of irradiated materials. Qualitative trends of swelling modi®cation in well

annealed materials correlate with experimental observations; however for cold-worked materials the model predicts no-

ticeable decrease in swelling rate by one-dimensionally di�using clusters, which is in contrast with the observed material

behaviour. Ó 1998 Elsevier Science B.V. All rights reserved.

PACS: 61.80.Az; 61.80.Hg

1. Introduction

Irradiation of structural materials with high energy

neutrons typical for fast ®ssion and fusion reactors re-

sults in radiation damage, which occurs mainly in the

form of collision cascades. As discovered recently in mo-

lecular dynamics simulations [1±6], such high-energy

cascades produce not only isolated point defects (vacan-

cies and interstitials), but also vacancy and interstitial

clusters containing up to 10±20 defects. The creation

of such clusters can be straightforwardly incorporated

in the classical rate theory of swelling (as formulated

in Ref. [7]) in terms of the modi®cation of overall sink

strengths (see e.g. [8,9]). For example, when the clusters

collapse to faulted (and thus immobile) dislocation loops

(which is very often the case for vacancy clusters and is

typical for interstitial clusters with more then approxi-

mately ten interstitials [10]), the in-cascade cluster cre-

ation leads only to the renormalization of the

dislocation density.

An interesting feature of the cascade produced dam-

age, disregarded in the above mentioned analytical ap-

proaches, is the mobility of very small interstitial

clusters (SICs). As indicated by some computer simula-

tions [1] the clusters with the number of interstitials

n6 n� � 4±6 can perform one-dimensional motion along

low-index crystallographic directions, the number M of

equivalent directions being de®ned by crystal symmetry

(e.g. M� 4 and M� 6 for clusters moving along close

packed directions in bcc and fcc lattices, respectively).

The mobility of SICs should be appropriately taken into

account in the rate theory description of radiation-in-

duced phenomena. In particular, if the mobility of small

interstitial clusters is su�ciently high in order to provide

the accommodation of their concentration to the evolu-

tion of extended sinks, they should be considered as a

third kind of mobile defect in addition to vacancies

and self-interstitials.

The one-dimensional motion of small interstitial clus-

ters (SIC) is often interpreted in the current literature

(see e.g. [11±13]) in terms of the dislocation loop glide.

However, the glide, i.e. the directed motion of SICs un-

der the e�ect of applied stress, can hardly be of impor-

tance for microstructural evolution. First of all, glissile

loops become energetically favored compared to faulted

con®gurations at much larger loop sizes than those typ-

ical for cascade-produced SICs. Moreover, in order to

provide the matter transport over noticeable distances
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via the loop glide, the long-scale stress gradients should

be acting in the material. Indeed, the glide force F acting

on a small circular loop that is able to glide along, say,

the x-axis of a Cartesian coordinate system can be easily

derived from the well known Peach±Koehler formula

[14] to be

F ' ÿnX
drxx

dx
; �1�

where n is the number of interstitials in the loop, X is the

atomic volume and rxx is the corresponding component

of the stress tensor acting in the loop center. Such long-

scale gradients can hardly be provided by strongly ¯uc-

tuating internal stresses.

It seems more reasonable that the movement of SICs

occurs via one-dimensional stochastic jumps, being a

di�usional process. The aim of the present paper is to in-

vestigate how such one-dimensional di�usion of intersti-

tial clusters a�ects the rate of material swelling under the

cascade-forming irradiation. Consequently, among a

number of various defects produced in collision cascades

we consider only those mobile, namely, isolated point

defects and SICs. Larger cascade-produced interstitial

clusters (with n > n*) provide a negligible modi®cation

of the total dislocation density and are not considered

here. Additionally, we neglect vacancy clusters (loops

and stacking fault tetrahedra) forming during the cas-

cade cooling down, which is a reasonable approximation

at not too short irradiation doses, when the steady-state

size distribution of dissolving vacancy clusters has al-

ready been established. Correspondingly, all vacancies

surviving the in-cascade recombination are mobile and

thus the estimate of the SIC e�ect on swelling, as ob-

tained below, is the maximum one.

In Section 2 we formulate a set of rate theory equa-

tions that take into account the presence of one-dimen-

sionally di�using small interstitial clusters, while in

Section 3 the sink strengths are speci®ed. The rate of

void growth and the swelling kinetics modi®cation due

to SIC generation are discussed in Section 4.

2. Formulation of the problem

Let us assume that cascade-produced small intersti-

tial clusters (consisting of 26 n < n� interstitials can per-

form one-dimensional di�usional motion along a set of

M crystallographically equivalent directions with corre-

sponding di�usion coe�cients Dn, the latter being de-

pendent on the SIC size n, but not on its particular

orientation m �16m6M�. Then the mean-®eld concen-

tration Cm
n of SICs of a chosen orientation m can be de-

scribed by one-dimensional rate equation

Gm
n � Im

n ÿ �km
n �2DnCm

n �
X
m0 6�m

�Rmm0Cm0
n ÿ Rm0mCm

n � � 0; �2�

where Gm
n is the generation rate of SICs of size n and ori-

entation m, Rmm0 is the rate of on-site ``rotation'' of m0-
type clusters to the m-type clusters and Im

n is the rate

of cluster creation due to the interaction of SICs with

point defects,

Im
n � L�nÿ1�iD�nÿ1�iCm

nÿ1Ci � L�n�1�vD�n�1�vCm
n�1Cv

ÿ �LniDniCi � LnvDnvCv�Cm
n ; �3�

Dab � Da � Db is a sum of di�usion coe�cients and Lab

is the recombination factor for corresponding defects a
and b �a; b � i; v; n; where i denotes interstitials, v the va-

cancies and n the SICs of size n). In writing down Eq. (2)

we neglect the creation of SICs due to the dissolution of

larger dislocation loops, which means that L�n��1�v � 0.

In the case of isotropic (or cubic) materials that will

be discussed below we can additionally assume that

the sink e�ciencies are the same for all orientations of

SICs and equal to k2
n for n-atom cluster absorption

(i.e. �km
n �2 � k2

n for all m). Then one can describe SICs

in terms of their overall concentration

Cn �
XM

m�1

Cm
n ; �4�

which is determined by an equation obtained via sum-

mation of Eq. (2) for all SIC orientations:

Gn � In ÿ k2
nDnCn � 0; �5�

where Gn �
P

m Gm
n and In �

P
m Im

n . Note that in the lat-

ter equation all terms accounting for the on-site SIC ro-

tation have cancelled each other and the one-

dimensional nature of the di�usion process is kept only

in k2
n .

The rate equations for the mean-®eld concentrations

Cv and Ci of three-dimensionally di�using vacancies and

interstitials are only slightly modi®ed by one-dimension-

ally di�using SICs,

Ga ÿ k2
aDaCa ÿ LivDivCiCv ÿ

Xn�
n�2

LnaDnaCnCa � 0

�a � i; v�; �6�

where Ga is the generation rate, Da the di�usion coe�-

cient, k2
a the sink strengths for a-type point defects

�a � i; v�, respectively. In writing down Eq. (6) it is as-

sumed that the irradiation temperature is su�ciently

low in order to neglect the thermal evaporation of point

defects from SICs and extended sinks.

The number of vacancies created by irradiation is ex-

actly equal to the number of displaced atoms, implying

the relation

Gv � Gi �
Xn�
n�2

nGn: �7�
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3. The e�ciencies of defect absorption by extended sinks

In order to determine the defect concentrations from

the equations of Section 2, one has to specify for all

moving defects the sink strengths k2
a . For three-dimen-

sionally di�using defects these are calculated as sums

of strengths of di�erent sink types present in the material

[7]. Usually the principal sink types governing vacancy

and interstitial loss are voids and dislocations (including

loops), which have the well-known strengths, namely,

k2
Va � 4pYaRNV; �8�

k2
Da � ZaqD; �9�

where NV is he number density of voids, R the average

void radius, qD the dislocation density, Ya and

Za�a � i; v� the bias factors for voids and dislocations,

respectively. Correspondingly, k2
a � k2

Va � k2
Da.

On the other hand, the sink strengths for SICs de-

pend very much on the general nature of SIC di�usion,

as determined by the ease of SIC on-site rotation. When

the distance covered by a SIC between two consecutive

on-site rotations, lR, is noticeably shorter than the typi-

cal inter-sink spacing, lS, SIC di�usion can be consid-

ered as essentially three-dimensional and the SIC sink

strengths will be given by equations similar to Eqs. (8)

and (9). In other words, in this case the incorporation

of SICs into consideration will result in minor quantita-

tive modi®cation of the swelling rate, but the qualitative

trends of the swelling behavior remain unaltered. On the

contrary, in the opposite limiting case of lR � lS, the

functional dependence of the SIC sink strength on the

sink parameters is changed and the swelling behavior be-

comes qualitatively di�erent from that in the absence of

SICs. Therefore, in what follows we restrict ourselves to

the case when the on-site rotations of SICs are neglected

and the clusters move strictly one-dimensionally.

In the limiting case adopted we may use a general ex-

pression for the sink strengths for one-dimensionally dif-

fusing defects [15]:

k2
n � 2kÿ2

n ; �10�
where

kn �
X

S

rnSNS

 !ÿ1

; �11�

NS is the volume concentration of sinks of the type S, rnS

is the sink cross-section for capture of clusters of size n,

factor 2 in Eq. (10) takes into account that the defects

are captured from two sides of a sink and summation

in Eq. (11) is over the di�erent sink types. Note that al-

though kn in Eq. (10) has the physical meaning of a

screening length of the sink ensemble [16,17], it is de®ned

by the same relation as the defect mean free path before

the capture by sinks, as predicted from the particle beam

scattering analogy [12,18].

The summation in Eq. (11) for a particular case when

the considered sinks include spherical voids of capture

radius Rn, dislocations with the capture radius rn (the lat-

ter may noticeably exceed the dislocation core radius rD

if the capture of defects is a�ected by their elastic inter-

action with dislocations [12]) and planar grain bound-

aries gives [15]

k2
n � 2�pNVR2

n � 2qDrn � cGdÿ1
G �2; �12�

where dG is the average grain size, and the factor cG � 1

accounts for the geometry of grains. An estimate for the

application relevant values of dislocation density

qD � 1012±1014 mÿ2 and dG � 10 lm shows that for

any reasonable value of rn�� 1±10 nm� dislocations are

much weaker sinks for one-dimensionally di�using de-

fects than grain boundaries. On the contrary, voids with

typical densities NV � 1019±1021 mÿ3 become quite com-

parable in strength to grain boundaries when the void

size reaches Rn � 10±100 nm.

4. Void growth rate and swelling

The growth rate of a void with radius R due to the

absorption of vacancies, interstitials and SICs is given

by

dR
dt
� 1

R
�YvDvCv ÿ YiDiCi� ÿ 1

4pR2

Xn�

n�2

nJn; �13�

where the ®rst two terms on the r.h.s. of Eq. (13) repre-

sent the vacancy and interstitial currents to the void and

Jn is the current of n-atomic SICs, de®ned as [15]

Jn � 2pR2 DnCn

kn
: �14�

To simplify the analysis, we assume below Yi � Yv � 1,

since the deviations of void bias factors from unity are

important only for void sizes smaller than 10±20 nm

[19].

The mean-®eld concentrations of point defects and

SICs are to be de®ned from the set of equations present-

ed in Section 2, which is complicated and does not allow

simple analytical solution. In order to follow qualitative

trends of the SIC di�usion in¯uence on the swelling ki-

netics, we neglect in the rate equations all terms of the

second order in defect concentrations. This assumption

is reasonable at temperatures close to that of the peak

swelling. Then the concentrations of defects are found

easily and the void growth rate is given by

dR
dt
� 1

R
Gv

k2
v

ÿ Gi

k2
i

� �
ÿ 1

4

Xn�

n�2

nGnkn: �15�

Since the one-dimensionally di�using clusters are

small compared to the linear dimensions of sinks, we

can assume that the SIC capture by sinks is insensitive
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to cluster sizes and thus kn for all n is equal to a certain

value ks, which is de®ned by Eq. (12) with the SIC cap-

ture radii of voids and dislocations being set equal to

their geometrical sizes. After substitution of Eqs. (8)±

(11) into Eq. (15), the latter can be rewritten as

dR
dGvt

� �Zi ÿ Zv�qD

Rk2
v k2

i
� e
�4kAs ÿ ZiqDR�ks

4Rk2
i

; �16�

where e �Pn nGn=Gv is the relative portion of in-

cascade interstitials agglomerated in SICs and

kAs � 2cDqDrD � cGdÿ1
G is the inverse of the SIC mean

free path de®ned by all sinks excluding voids. It is imme-

diately seen that the ®rst term on the r.h.s. of Eq. (16)

gives the rate of void growth in the absence of SIC pro-

duction, while the second term de®nes the correction due

to SIC creation in collision cascades. In order to esti-

mate its contribution, it is convenient to introduce

non-dimensional values for void radius, r � R=Rc; and

irradiation does, / � Gvt=Uc; where Rc � ZiqD=4pNV is

the void radius at which the sink strength of voids for

point defects is equal to that of dislocations and

Uc � �ZiqD�3=�4pNV�2 is the characteristic dose of void

growth. For typical parameter values summarized in Ta-

ble 1, the characteristic void radius and irradiation dose

vary from Rc � 250 nm and Uc � 10ÿ5 dpa in well an-

nealed materials �qD � 1012 mÿ2� to Rc � 2 nm and

Uc � 10 dpa in cold-worked materials �qD � 1014 mÿ2).

Using the non-dimensional variables, we may reduce

Eq. (16) to

dr
d/
� dr

d/

����
e�0

1� e
B

D
� �

; �17�

where B � 1ÿ �Zv=Zi� is the dislocation bias, the void

growth rate in the absence of SICs is given by

dr
d/

����
e�0

� B
r�r � 1��r � 1ÿ B� �18�

and

D � �rs ÿ r��r � 1ÿ B�
�r2 � rs� ; �19�

where

rs � 16pNVkAs

�ZiqD�2
� 16pcG

Z2
i

NV

q2
DdG

� 5
NV

q2
DdG

: �20�

At the relevant parameter values, rs varies in a broad

range of 10ÿ2±103.

The radius dependence of the correction term D is

shown in Fig. 1. It can be seen that the sign of the

correction term D is determined by the unique param-

eter rs, which de®nes the `transition' void size

Rs � rsRc, at which the ratios `void sink strength/alter-

native sink strength' are the same for interstitials and

SICs. At the void radii smaller than Rs the presence of

SICs accelerates the void growth, whereas at R > Rs

the growth of voids is decelerated. An estimate with

the parameters from Table 1 predicts Rs � 100 nm at

qD � 1012 mÿ2 and Rs � 1 nm at qD � 1014 mÿ2, indi-

cating quite di�erent e�ect of SICs on void kinetics

in annealed and cold-worked materials. As low dislo-

cation densities quite noticeable increase in the void

growth rate is expected at initial stages of irradiation

(while R < Rs�. On the contrary, in cold worked mate-

rials the value of Rs is comparatively small and the

dominant trend is the slowing down of the void

growth.

The swelling rate per unit dose dS=dU (where U is the

NRT-standard value, de®ned according to Gvt � nU
with the cascade e�ciency n ' 0:1 [13]) is given by the

relation

dS
dU
� 4pNR2 dR

dU
� nr2 dr

d/
: �21�

The dose dependencies of S predicted by Eq. (21) are

shown in Figs. 2±4 for di�erent values of qD and e (other

relevant parameters are from Table 1). Integration of

Eq. (21) is performed under simplifying assumption that

all voids appear simultaneously at a certain incubation

dose Ui, i.e. the initial condition for the void radius is ta-

ken in the form R�Ui� � 0.

In well-annealed materials the presence of one-di-

mensionally migrating clusters results in quite noticeable

acceleration of swelling, see Fig. 2 (corresponding to

qD � 1012 mÿ2 and rs ' 55). This result is immediately

Table 1

Parameters used for numerical estimates

Parameter Value

Void number density NV, mÿ3 1020

Average grain size dG, lm 10

Dislocation bias B 0.25

Dislocation bias factor for interstitials, Zi 3

Cascade e�ciency, n 0.1
Fig. 1. Correction term D as a function of the void radius R
(normalized per Rs).
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related to the fact that Rs in such materials is su�ciently

high and the voids of any reasonable size fall into the re-

gion of accelerated void growth, as indicated in Fig. 1.

At higher dislocation densities the transition void size

decreases to the values that can be achieved by growing

voids during reasonable irradiation time. In such situa-

tions, exempli®ed in Fig. 3, the swelling kinetics are

more complicated. Like in the case of well-annealed ma-

terials, the swelling is initially accelerated, but this accel-

eration is only transient. At su�ciently high irradiation

doses the presence of SICs suppresses swelling. More-

over, when the portion of in-cascade clustered intersti-

tials is su�ciently high, a clear tendency to swelling

saturation at high doses is observed. The behaviour re-

sults from the fact that at r > rs the correction term D
in Eq. (17) becomes negative and at e > B the presence

of SICs stops the void growth at the radius rmax de®ned

from the equation

ÿ D�r � rmax� � B
e
: �22�

With even higher dislocation densities the region of

accelerated swelling becomes progressively shorter and

in cold-worked materials the suppression of swelling

dominates, this suppression being manifested in consid-

erable decrease of the steady-state swelling rate. As can

be seen in Fig. 4, at su�ciently high dislocation densities

only several percent of interstitials clustered in SICs can

totally suppress swelling.

We thus see, that the e�ect of one-dimensionally

migrating SICs on swelling is not straightforward

and is utterly sensitive to material parameters. In an-

nealed materials the swelling behaviour in the presence

of SICs is in quite nice qualitative agreement with ex-

perimental observations [20]. However, the predicted

swelling behaviour in cold-worked materials seems to

be unrealistic. Even though preirradiation cold-work-

ing can in principal suppress swelling, such suppres-

sion is primarily manifested in the delay of the

swelling onset, rather then in the decrease of the stea-

dy-state swelling rate [21].

It is interesting to note that only several percent of in-

terstitials clustered in SICs is su�cient to practically

suppress swelling in a cold-worked material. According

to the already cited results of MD simulations of SIC

production in cascades, even under very conservative as-

sumptions one can expect that the portion of interstitials

clustered in cascades exceeds those several percent of in-

terstitials that are necessary to practically suppress swell-

ing in a cold-worked material. It seems, therefore, that it

is the one-dimensional nature of SIC movement that re-

quires serious justi®cation in order to be applied to the

explanation of physical e�ects in irradiated materials

(see e.g. [11,13]).

5. Conclusions

1. The rate theory of swelling is extended in order to ac-

count for the one-dimensional di�usion of small in-

terstitial clusters created in collision cascades.

Fig. 2. The swelling kinetics in an annealed material

�qD � 1012 mÿ2� at di�erent relative portion of in-cascade clus-

tered interstitials, e. The values of e (in percents) are indicated at

corresponding curves.

Fig. 3. Same as Fig. 2, but for qD � 3� 1012 mÿ2.

Fig. 4. Same as Fig. 2, but for a cold-worked material

�qD � 1014 mÿ2�.
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2. It is demonstrated that the correction to the swelling

rate is directly proportional to the fraction of SICs

clustered in cascades. The sign of the correction

(and correspondingly the acceleration or slowing

down of the void growth rate) is governed by a un-

ique parameter ± the transition radius Rs de®ned by

Eq. (20).

3. Depending on the microstructural parameters,

one-dimensionally di�using SICs can either accel-

erate or slow down the swelling. In particular,

in well-annealed materials an increase of the

swelling is expected in accordance with experimen-

tal observations, while in cold-worked materials

the presence of SICs is predicted to suppress

swelling. The mode of swelling suppression (the

decrease of the swelling rate) is, however, di�erent

from that observed experimentally (the delay of

swelling initiation).

4. The disagreement between the predicted e�ect of one-

dimensionally di�using SICs on swelling and the ex-

perimentally observed swelling behaviour in cold-

worked materials indicates the necessity of thorough

justi®cation of the one-dimensional nature of SIC

mobility.
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